Application of Human-biometeorological Comfort Conditions in Köppen-geiger Climate type for Different Cities of Gangetic West Bengal

Main Article Content

Jit Biswas

Abstract

Gangetic West Bengal (GWB) belongs to Aw climate type after Köppen-Geiger climate classification (KGC). Human thermal comfort (HTC) and vapour pressure (VP) conditions together can represent human-biometeorological comfort conditions. Physiological equivalent temperature (PET) is used for indexing HTC. 3-hr PET and VP values are calculated based on hourly meteorological data of six selected cities for 18 years (2000-2017) time period. RayMan model has been applied to calculate hourly PETs and VPs. PET and VP data are grouped by frequencies and time period into several classes. Spatial distribution and dispersion characters of biometeorological comfort conditions are measured by statistical techniques. Thermally heat stress is very high in Apr and May. Months of winter indicate the presence of different thermal conditions. Annual comfort is maximum in the coastal city when stressful condition mostly prevails over Krishnanagar (KNG). Puruliya (PRA) shows the driest condition. The obtained information can be applied in planning, healthcare, and tourism sector.

Keywords:
Köppen-geiger climate classification, physiological equivalent temperature, vapour pressure, different time scales, Gangetic West Bengal.

Article Details

How to Cite
Biswas, J. (2020). Application of Human-biometeorological Comfort Conditions in Köppen-geiger Climate type for Different Cities of Gangetic West Bengal. Journal of Geography, Environment and Earth Science International, 24(1), 14-25. https://doi.org/10.9734/jgeesi/2020/v24i130190
Section
Short Research Article

References

ASHRAE. ASHRAE handbook: Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta; 2001.

Fanger PO. Assessment of man’s thermal comfort in practice. British Journal of Industrial Medicine. 1973;30(4):313-324.
Available:https://www.jstor.org/stable/27722846

Höppe P. The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology. 1999;43(2):71-75.
Available:https://doi.org/10.1007/s004840050118

Matzarakis A, Mayer H, Iziomon MG. Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology. 1999;43(2):76-84.
Available:https://doi.org/10.1007/s004840050119

He X, Miao S, Shen S, Li J, Zhang B, Zhang Z, Chen X. Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. International Journal of Biometeorology. 2015;59(3):285-297.
Available:https://doi.org/10.1007/s00484-014-0841-5

Lin TP, Matzarakis A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology. 2008;52(4):281-290.
Available:https://doi.org/10.1007/s00484-007-0122-7

Matzarakis A, Rutz F, Mayer H. Modelling radiation fluxes in simple and complex environments–application of the RayMan model. International Journal of Biometeorology. 2007;51(4):323-334.
Available:https://doi.org/10.1007/s00484-006-0061-8

Ng E, Cheng V. Urban human thermal comfort in hot and humid Hong Kong. Energy and Buildings. 2012;55:51-65.
Available:https://doi.org/10.1016/j.enbuild.2011.09.025

Yang S-Q, Matzarakis A. Implementation of human thermal comfort information in Köppen-Geiger climate classification–the example of China. International Journal of Biometeorology. 2016;60(11):1801-1805.
Available:https://doi.org/10.1007/s00484-016-1155-6

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen- Geiger climate classification updated. Meteorologische Zeitschrif. 2006;15(3): 259-263.
Available:http://koeppen-geiger.vu-wien.ac.at/pdf/Paper_2006.pdf

Mayer H, Höppe P. Thermal comfort of man in different urban environments. Theoretical and Applied Climatology. 1987;38(1):43-49.
Available:https://doi.org/10.1007/BF00866252

Nicol F. Adaptive thermal comfort standards in the hot-humid tropics. Energy and Buildings. 2004;36(7):628-637.
Available:https://doi.org/10.1016/j.enbuild.2004.01.016

Matzarakis A, Rutz F, Mayer H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. International Journal of Biometeorology. 2010;54(2):131-139.
Available:https://doi.org/10.1007/s00484-006-0061-8

Herrmann J, Matzarakis A. Influence of mean radiant temperature on thermal comfort of humans in idealized urban environments. Proceedings of 7th Conference on Biometeorology, Meteorological Institute, Albert-Ludwigs-University of Freiburg. 2010;20:522-527.
Available:http://www.urbanclimate.net/matzarakis/papers/BIOMET7_Herrmann_Matzarakis_522_527.pdf

Matzarakis A, Rutz F. Application of the RayMan model in urban environments. Meteorological Institute, University of Freiburg, Germany. 2007;13:2.
Available:https://ams.confex.com/ams/pdfpapers/169963.pdf

Hwang R-L, Lin T-P, Matzarakis A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and Environment. 2011;46(4):863-870.
Available:https://doi.org/10.1016/j.buildenv.2010.10.017

Krüger EL, Minella FO, Matzarakis A. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. International Journal of Biometeorology. 2014;58(8):1727-1737.
Available:https://doi.org/10.1007/s00484-013-0777-1

Matzarakis A, Mayer H. Another kind of environmental stress: Thermal stress. WHO Collaborating Centre for Air Quality Management and Air Pollution Control, Newsletters. 1996;18:7-10.